Power Triode

NUVISTOR TYPE
Heater Designed to Operate from Battery Supplies
Used in Sonobuoy and Other Expendable Equipment

Electrical:

Heater Characteristics and Ratings:
Voltage (DC) Tubes will be supplied with the heater
designed to operate within ±10% of any specified center
heater voltage between 6.0 and 8.5 volts to meet specific
battery-supply requirements in sonobuoy and other ex-
pendable equipment.

Input .. 0.85 watt

Peak heater-cathode voltage:
Heater negative with
respect to cathode 100 max. volts
Heater positive with
respect to cathode 100 max. volts

Direct Interelectrode Capacitances (Approx.):
Grid to plate 2.2 pf
Grid to cathode, shell,
and heater 4.2 pf
Plate to cathode, shell,
and heater 1.6 pf
Plate to cathode 0.26 pf
Heater to cathode 1.4 pf

Characteristics, Class A, Amplifier:
Heater Voltage Specified center value
Plate Supply Voltage 75 volts
Grid Connected to negative end of cathode resistor
Cathode Resistor 100 ohms
Amplification Factor 28
Plate Resistance (Approx.) 2200 ohms
Transconductance 12800 µmhos
Plate Current 15 ma
Grid Voltage (Approx.) for plate µa = 10 ... –8 volts

Mechanical:
Operating Position Any
Type of Cathode Coated Unipotential
Maximum Overall Length 0.800"
Maximum Seated Length 0.625"
Maximum Diameter 0.440"
Weight (Approx.) 1.9 grams
Envelope Metal Shell MT4
Socket See Socket & Connector Information for

RCA Nuvistor Tubes at front of this section
Base Medium Ceramic-Wafer Twelvar 5-Pin (JEDEC No.E5-65)
Basing Designation for BOTTOM VIEW. 12AQ

Pin 1a—Do Not Use
Pin 2—Plate
Pin 3a—Do Not Use
Pin 4—Grid
Pin 5a—Do Not Use
Pin 6a—Do Not Use
Pin 7a—Do Not Use
Pin 8—Cathode
Pin 9a—Do Not Use
Pin 10—Heater
Pin 12—Heater

INDEX=LARGE LUG
•=SHORT PIN; IC—DO NOT USE

RF AMPLIFIER or OSCILLATOR — Class C

Maximum Ratings, Absolute-Maximum Values:

For operation at any altitude

Up to 175 Mc
Plate Supply Voltage.......................... 300 max. volts
Plate Voltage.................................. 250 max. volts
Grid Voltage:
 Negative-bias value........................ 55 max. volts
 Peak-positive value......................... 4 max. volts
Grid Current.................................. 5 max. ma
Cathode Current.............................. 25 max. ma
Plate Dissipation.............................. 2 max. watts
Metal-Shell Temperature
 (Measured in Zone "A" as
 shown on Dimensional Outline).......... 150 max. °C

Typical Operation:

As cathode-drive rf amplifier

At 175 Mc
Heater Voltage............................... Specified center value
Plate Supply Voltage........................ 150 volts
Grid Resistor................................ 4700 ohms
Driver Power Output.......................... 250 mw
Useful Power Output\(^b\). 1.6 watts

As oscillator

At 175 Mc
Heater Voltage............................... Specified center value
Plate Supply Voltage........................ 170 volts
Grid Resistor................................ 4700 ohms
Plate Input.................................. 3 watts
Useful Power Output\(^b\). 1.5 watts

Maximum Circuit Values:

Grid-Circuit Resistance........................ 0.05 max. megohm
FREQUENCY DOUBLER — Class C

Maximum Ratings, Absolute-Maximum Values:

For operation at any altitude

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate Supply Voltage</td>
<td>300</td>
<td>max. volts</td>
</tr>
<tr>
<td>Plate Voltage</td>
<td>250</td>
<td>max. volts</td>
</tr>
<tr>
<td>Grid Voltage:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative-bias value</td>
<td>200</td>
<td>max. volts</td>
</tr>
<tr>
<td>Peak-positive value</td>
<td>4</td>
<td>max. volts</td>
</tr>
<tr>
<td>Grid Current</td>
<td>5</td>
<td>max. ma</td>
</tr>
<tr>
<td>Cathode Current</td>
<td>22</td>
<td>max. ma</td>
</tr>
<tr>
<td>Plate Dissipation</td>
<td>2</td>
<td>max. watts</td>
</tr>
<tr>
<td>Metal-Shell Temperature (Measured in Zone "A" as shown on Dimensional Outline)</td>
<td>150</td>
<td>max. °C</td>
</tr>
</tbody>
</table>

Typical Operation:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heater Voltage</td>
<td></td>
<td>Specified center value</td>
</tr>
<tr>
<td>Plate Supply Voltage</td>
<td>135</td>
<td>volts</td>
</tr>
<tr>
<td>Grid Resistor</td>
<td>30000</td>
<td>ohms</td>
</tr>
<tr>
<td>Driver Power Output</td>
<td>150</td>
<td>mw</td>
</tr>
<tr>
<td>Useful Power Output<sup>b</sup></td>
<td>800</td>
<td>mw</td>
</tr>
</tbody>
</table>

Maximum Circuit Values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid-Circuit Resistance</td>
<td>0.05</td>
<td>max. megohm</td>
</tr>
</tbody>
</table>

^a Pins 1, 3, 5, 6, 7, and 9 are of a length such that their ends do not touch the socket insertion plane.

^b Measured at load.

CHARACTERISTICS RANGE VALUES

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Note</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heater Current.</td>
<td>1</td>
<td>0.95</td>
<td>1.05</td>
</tr>
<tr>
<td>Direct Interelectrode Capacitances:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grid to plate.</td>
<td>2</td>
<td>1.8</td>
<td>2.6</td>
</tr>
<tr>
<td>Grid to cathode, shell, and heater</td>
<td></td>
<td>3.8</td>
<td>4.6</td>
</tr>
<tr>
<td>Plate to cathode, shell, and heater</td>
<td></td>
<td>1.4</td>
<td>1.8</td>
</tr>
<tr>
<td>Plate to cathode</td>
<td>2</td>
<td>0.20</td>
<td>0.32</td>
</tr>
<tr>
<td>Heater to cathode</td>
<td>2</td>
<td>1.1</td>
<td>1.7</td>
</tr>
<tr>
<td>Plate Current (1)</td>
<td>1.3</td>
<td>11</td>
<td>19</td>
</tr>
<tr>
<td>Plate Current (2)</td>
<td>1.4</td>
<td>–</td>
<td>100</td>
</tr>
<tr>
<td>Transconductance (1)</td>
<td>1.3</td>
<td>11400</td>
<td>14200</td>
</tr>
<tr>
<td>Useful Power Output (1)</td>
<td>1.5</td>
<td>1.4</td>
<td>–</td>
</tr>
<tr>
<td>Useful Power Output (2)</td>
<td>5.6</td>
<td>1.3</td>
<td>–</td>
</tr>
<tr>
<td>Reverse Grid Current</td>
<td>1.7</td>
<td>–</td>
<td>0.3</td>
</tr>
<tr>
<td>AC Emission</td>
<td>1.8</td>
<td>20</td>
<td>–</td>
</tr>
<tr>
<td>Amplification Factor</td>
<td>1.3</td>
<td>22</td>
<td>34</td>
</tr>
</tbody>
</table>

RADIO CORPORATION OF AMERICA
Electronic Components and Devices
Harrison, N. J.

DATA 2
1-64
Heater-Cathode Leakage Current:
Heater negative with respect to cathode. 1.9 - 5 \mu A
Heater positive with respect to cathode. 1.9 - 5 \mu A

Leakage Resistance:
Between grid and all other electrodes tied together 1.10 5000 - megohms
Between plate and all other electrodes tied together 1.11 10000 - megohms

Note 1: With dc heater volts = specified center value, E_r(ctr).
Note 2: Measured in accordance with EIA Standard RS-191-A.
Note 3: With dc plate supply volts = 75, grid and metal shell connected to negative end of cathode resistor, cathode resistor (ohms) = 100, and cathode-bypass capacitor (\mu f) = 1000.
Note 4: With dc plate volts = 75, dc grid volts = -9, and metal shell connected to ground.
Note 5: Measured at load in 175-Mc, cathode-drive, rf-amplifier circuit with dc plate supply volts = 150, grid resistor (ohms) = 2500, and driver power output (milliwatts) = 250.
Note 6: With dc heater volts = 0.9 specified center value.
Note 7: With dc plate supply volts = 80, dc grid supply volts = -1.2, grid-circuit resistance (megohms) = 1 (the internal resistance of the current meter used for this measurement), and metal shell connected to ground.
Note 8: With dc plate supply volts = 40, dc grid supply volts = -6.5, rms 60-cps ac grid signal volts = 8, dc grid-circuit resistance (ohms) = 2, plate- and grid-voltage supplies each bypassed with capacitor (\mu f) = 500, and metal shell connected to ground. "AC Emission" is measured as the dc component of current in the plate circuit.
Note 9: With dc heater-cathode volts = 100.
Note 10: With grid 100 volts negative with respect to all other electrodes tied together, and metal shell connected to ground.
Note 11: With plate 300 volts negative with respect to all other electrodes tied together, and metal shell connected to ground.

SPECIAL TESTS

Short-Duration Shock (I):
Peak Impact Acceleration 1000 g

This test is performed on a sample lot of tubes to determine the ability of the tube to withstand the specified Peak Impact Acceleration. Tubes are held rigid in each of four different positions (X_1, X_2, Y_1, and Y_2) in a Navy-Type High-Impact (Flyweight) Shock Machine and, with tube-electrode voltages applied, are subjected to 20 blows (5 in each position) at the specified Peak Impact Acceleration.

At the end of this test, tubes are criticized for Continuity and Shorts, Usefull Power Output (I), Reverse Grid Current, and Heater-Cathode Leakage Current.
Long-Duration Shock (2):
Peak Impact Acceleration 50 g

This test is performed, using a half-sine-wave, 11-milli-
second, mechanical shock pulse, on a sample lot of tubes from
each production run to determine the ability of the tube to
withstand the specified Peak Impact Acceleration. Tubes are
held rigid in each of two positions in three mutually perpen-
dicular axes on a free-fall table. The longitudinal axis of
the tube is coincident with one of the three axes. The table
is dropped a total of 18 times to a horizontal surface from a
height sufficient to produce the specified Peak Impact Accel-
eration. The material of the horizontal surface is such that
the duration of the half-sine-wave shock pulse is 11 milli-
seconds. No tube-electrode voltages are applied during this
test.

At the end of this test, tubes are criticized for Continu-
ity and Shorts, Useful Power Output (I), Reverse Grid Current,
and Heater-Cathode Leakage Current.

Sweep-Frequency Fatigue Vibration:
This test is performed on a sample lot of tubes from each
production run to determine the ability of the tube to with-
stand the Sweep-Frequency Fatigue Vibration specified below.
Tubes are held rigid and operated with dc heater-cathode volts
= 100. During operation, the tube is vibrated through the
frequency range from 5 to 500 cps and back to 5 cps. One
such vibration sweep cycle takes approximately 15 minutes.
This cycle is repeated for a period of 3 hours along each of
three mutually perpendicular axes for a total of 9 hours.
The longitudinal axis of the tube is coincident with one of
the three axes. The vibrations are applied as follows:

a. The vibration from 5 to 50 cps is applied with a constant
 peak amplitude of 0.040 inch (0.080 inch peak-to-peak).

b. The vibration from 50 to 500 cps is applied with a con-
 stant acceleration of 10 g.

c. The vibration from 500 to 50 cps and then to 5 cps follows
 the same procedure, but in reverse.

At the end of this test, tubes are criticized for Continu-
ity and Shorts, Useful Power Output (I), Reverse Grid Current,
and Heater-Cathode Leakage Current.

Low-Pressure Voltage Breakdown:
This test is performed on a sample lot of tubes from each
production run to determine the ability of the tube to with-
stand high-altitude (low-air-pressure) conditions. Tubes are
operated with 250 volts rms (60-cycle, ac) applied between
plate and all other electrodes and metal shell connected to-
gether. Tubes must not break down or show evidence of corona
when subjected to an air pressure (8.0 ± 0.5 mm Hg) corres-
ponding to an altitude of 100,000 feet.
Continuity and Shorts:

This test is performed on a sample lot of tubes from each production run. Tubes are subjected to the Thyatron-Type Shorts Test described in MIL-E-111, Amendment 5, Paragraph 4.7.7, except that tapping is done by hand with a soft rubber tap (Specifications for this tap will be supplied upon request). The areas of acceptance and rejection for this test are shown in the accompanying Shorts-Test Acceptance-Limits graph. In this test, tubes are criticized for permanent or temporary shorts and open circuits.

Reliability Life (20 Hours):

This test is performed on a sample size (minimum of 80 tubes/lot for a 5-lot sampling plan or a minimum of 400 tubes for a single-lot sampling plan) designed to assure a process average AFR (Acceptable Failure Rate) of 0.5 per cent for Inoperatives and 2.1 per cent for Total Defectives and a process average RFR (Rejectable Failure Rate) of 2.0 per cent for Inoperatives and 4.7 per cent for Total Defectives.

During this test, tubes are operated at maximum-rated plate dissipation. At the end of this test, tubes are criticized for Useful Power Output (2), Inoperatives, and Total Defectives. A tube is considered Inoperative if Useful Power Output (2) is less than 0.700 watt.

Heater-Cycling Life (100 Hours):

Intermittent Operation 2000 cycles

This test is performed on a sample lot of tubes from each production run with heater volts = 1.35x specified center value cycled 1 minute ON and 2 minutes OFF, dc heater-cathode volts = -100, all other tube electrodes and metal shell connected to ground.

At the end of this test, tubes are criticized for Heater-Cathode Leakage Current, Open Heaters, Open Cathode Circuits, and Heater-Cathode Shorts.

Oscillator Life (100 Hours):

This test is performed on a sample lot of tubes from each production run.

During this test, tubes are operated as 175-Mc oscillator at maximum-rated plate dissipation.

At the end of this test, tubes are criticized for Useful Power Output (2), Reverse Grid Current, Inoperatives, and Total Defectives. A tube is considered Inoperative if Useful Power Output (2) is less than 0.700 watt.
Dimensions in Inches

BOTTOM VIEW
Showing Arrangement of All 11 Base Pins

MODIFIED BOTTOM VIEW
With Element Connections Indicated
and Short Pins Not Shown

NOTE 1: MAXIMUM OUTSIDE DIAMETER OF 0.440" IS PERMITTED ALONG 0.190" LUG LENGTH.

NOTE 2: METAL-SHELL TEMPERATURE SHOULD BE MEASURED IN ZONE "A".