RCA-8121 is a very small, low-cost, forced-air-cooled beam power tube designed for use as an rf power amplifier, oscillator, regulator, distributed amplifier, or linear rf power amplifier in mobile or fixed equipment.

Because of its high power sensitivity and high efficiency, the 8121 can be operated with relatively low plate voltage to give large power output with small driving power. In CW operation with a plate voltage of 1500 volts, the 8121 can provide useful power outputs of 235 watts up to 500 Mc.

The specially designed radiator makes possible a simplified arrangement for the air to flow in a transverse direction to the major axis of the radiator permitting a maximum plate dissipation of 150 watts.

The 8121 features a lightweight, cantilever-supported cylindrical electrode structure within a ceramic-metal envelope. This construction provides a very sturdy tube and permits high-temperature operation.

The terminal arrangement of the 8121 facilitates use of the tube with tank circuits of the coaxial or strip-line type. Effective isolation of the output circuit from the input circuit is provided at the higher frequencies by the low-inductance ring terminal for grid No.2. A base-pin termination for grid No.2 is also available for operation of the 8121 at the lower frequencies.

The tripod arrangement of both the cathode and the grid-No.1 leads not only simplifies construction, but enhances electrical characteristics. The three cathode leads reduce the inductance path to rf ground and reduce the input admittance at high frequencies. One of the cathode leads (preferably No.4 pin) may be series tuned to ground with a capacitor to provide broadband neutralization in the upper frequency range of the tube. The three grid-No.1 leads to separate pins accommodate a split-input circuit for distributed amplifier service.

GENERAL DATA

Electrical:
- **Heater, for Unipotential Cathode:**
 - Voltage (AC or DC) \(V \) \(13.5 \pm 10\% \) volts
 - Current at 13.5 volts \(I \) \(1.3 \) amp
 - Minimum heating time \(t \) \(60 \) sec
 - Mu-Factor, Grid No.2 to Grid No.1
 - For plate volts \(V_p \) = 450, Grid-No.2
 - \(V = 325 \), and plate amperes \(I_p \) = 1.2
 - \(\mu = 12 \)
- **Direct Inter-electrode Capacitances:**
 - Grid No.1 to plate \(C_{g1p} \) \(0.13 \) max. \(\mu F \)
 - Grid No.1 to cathode \(C_{g1c} \) \(16 \) \(\mu F \)
 - Plate to cathode \(C_{p1c} \) \(0.011 \) \(\mu F \)
 - Grid No.1 to grid No.2 \(C_{g1g2} \) \(22 \) \(\mu F \)
 - Grid No.2 to plate \(C_{g2p} \) \(6.5 \) \(\mu F \)
 - Grid No.2 to cathode \(C_{g2c} \) \(3.2 \) \(\mu F \)
 - Cathode to heater \(C_{c0} \) \(3.4 \) \(\mu F \)

Mechanical:
- **Operating Position**
- Any
- **Maximum Overall Length** \(2.196" \)
- **Seated Length** \(1.850" \pm 0.005" \)
- **Greatest Diameter** \(1.860" \pm 0.015" \)
- **Base—Large Wafer Elevenor 11-Pin with Ring (JEDEC No.11-81)**
- **Socket**
 - Mycalex® No. CP464-2, or equivalent
- **Weight (Approx.)** \(3 \) oz

Thermal:
- **Terminal Temperature (All Terminals)** \(250 \) max. \(^\circ \)C
- **Radiator Core Temperature (See Dimensional Outline)** \(250 \) max. \(^\circ \)C
- **Air Flow:**
 - See Fig.8—Typical Cooling Requirements for Type 8121.

Linear RF Power Amplifier

Single-Sideband Suppressed-Carrier Service

Peak-envelope conditions for a signal having a minimum peak-to-average power ratio of \(2 \)

Maximum CCS Ratings, Absolute-Maximum Values:

- **Up to 500 Mc**
 - DC PLATE VOLTAGE \(2200 \) max. volts
 - DC GRID-No.2 VOLTAGE \(400 \) max. volts

* Mycalex Corp. of America, 125 Clifton Blvd., Clifton, N.J.
DC GRID-No.1 VOLTAGE -100 max. volts
DC PLATE CURRENT AT PEAK OF ENVELOPE 450 max. ma
DC GRID-No.1 CURRENT 100 max. ma
PLATE DISSIPATION 150 max. watts
GRID No.2 DISSIPATION 8 max. watts
PEAK HEATER-CATHODE VOLTAGE:
Heater negative with
respect to cathode 150 max. volts
Heater positive with
respect to cathode 150 max. volts

Typical CCS Operation with *Two-Tone Modulation*:

At 30 Mc
DC Plate Voltage 1000 1500 volts
DC Grid-No.2 Voltage 250 250 volts
DC Grid-No.1 Voltage 20 20 volts
Zero-Signal DC Plate Current 100 100 ma
Effective RF Load Resistance 2270 3800 ohms
DC Plate Current at Peak
of Envelope 210 210 ma
Average DC Plate Current 160 160 ma
DC Grid-No.2 Current at
Peak of Envelope 10 10 ma
Average DC Grid-No.2 Current 7 7 ma
Average DC Grid-No.1 Current 0.06 0.06 ma
Peak-Envelope Driver Power
Output (Approx.) 0.3 0.3 watt
Output-Circuit Efficiency (Approx.) 90 85 %
Distortion Products Level: 5
Third Order 35 35 db
Fifth Order 40 40 db
Useful Power Output (Approx.):
Average 50h 85 h watts
Peak envelope 110h 170h watts

Maximum Circuit Values:
Grid-No.1-Circuit Resistance
Under Any Condition:
With fixed bias 25000 max. ohms
With fixed bias (in Class AB) 100000 max. ohms
With cathode bias Not recommended
Grid-No.2 Circuit Impedance 10000 max. ohms
Plate Circuit Impedance See Note j

RF POWER AMP. & OSCILLATOR — Class C Telegraphy
and
RF POWER AMPLIFIER — Class C FM Telephony

Maximum CCS Ratings, Absolute-Maximum Values:

<table>
<thead>
<tr>
<th>Up to 500 Mc</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC PLATE VOLTAGE 2200 max. volts</td>
</tr>
<tr>
<td>DC GRID-No.2 VOLTAGE 400 max. volts</td>
</tr>
<tr>
<td>DC GRID-No.1 VOLTAGE -100 max. volts</td>
</tr>
<tr>
<td>DC PLATE CURRENT 300 max. ma</td>
</tr>
<tr>
<td>DC GRID-No.1 CURRENT 100 max. ma</td>
</tr>
<tr>
<td>GRID-No.2 DISSIPATION 8 max. watts</td>
</tr>
<tr>
<td>PLATE DISSIPATION 150 max. watts</td>
</tr>
</tbody>
</table>

Peak Heater-Cathode Voltage:
Heater negative with
respect to cathode 150 max. volts
Heater positive with
respect to cathode 150 max. volts

Typical CCS Operation:

In Grid-Drive Circuit at 50 Mc
DC Plate Voltage 700 1000 1500 volts
DC Grid-No.2 Voltage 175 200 200 volts
DC Grid-No.1 Voltage -10 -50 -30 volts
DC Plate Current 300 300 300 ma
DC Grid-No.2 Current 25 20 20 ma
DC Grid-No.1 Current 50 40 40 ma
Driver Power Output (Approx.) 1.2 2.0 2.0 watts
Useful Power Output 120h 175h 275h watts

In Grid-Drive Circuit at 470 Mc
DC Plate Voltage 700 1000 1500 volts
DC Grid-No.2 Voltage 200 200 200 volts
DC Grid-No.1 Voltage -30 -30 -30 volts
DC Plate Current 300 300 300 ma
DC Grid-No.2 Current 10 10 10 ma
DC Grid-No.1 Current 30 30 30 ma
Driver Power Output (Approx.) 5 5 5 watts
Useful Power Output 150h 150h 235h watts

Maximum Circuit Values:
Grid-No.1-Circuit Resistance
Under Any Condition:
With fixed bias 25000 max. ohms
Grid-No.2 Circuit Impedance 10000 max. ohms
Plate Circuit Impedance See Note j

CHARACTERS RANGE VALUES

<table>
<thead>
<tr>
<th>Note</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Heater Current 1 1.15 1.45 amp</td>
<td></td>
</tr>
</tbody>
</table>
| 2. | Direct Interelectrode Capacitances:
 Grid-No.1 to plate 2 0.13 pf
 Grid-No.1 to cathode 2 14.3 17.7 pf
 Plate to cathode 2 0.0065 0.0155 pf
 Grid-No.1 to grid-No.2 2 19.8 24.2 pf
 Grid-No.2 to plate 2 5.7 7.1 pf
 Grid-No.2 to cathode 2 2.6 3.6 pf
 Cathode to heater 2 2.5 4.1 pf
| 3. | Grid-No.1 Voltage 1.3 -8 -19 volts |
| 4. | Reverse Grid-No.1 Current 1.3 -25 μa |
| 5. | Grid-No.2 Current 1.3 -7 46 μa |
| 6. | Peak Emission 1.4 13 peak amp |
| 7. | Interelectrode Leakage Resistance 5 1.0 meghm |

Note 1: With 13.5 volts ac or dc on heater.
Note 2: Measured with special shield adapter.
Note 3: With dc plate voltage at 700 volts, dc grid-No.2 voltage of 250 volts, and dc grid-No.1 voltage adjusted to give a dc plate current of 185 ma.
Note 4: For conditions with grid No.1 grid-No.2, and plate tied together; and pulse voltage source connected between plate and cathode. Pulse duration is 2.5 microseconds and pulse repetition frequency is 60 pps. The voltage-pulse amplitude is 200 volts peak. After 1 minute at this value, the current-pulse amplitude will not be less than the value specified.
Note 5: Under conditions with tube at 29°C to 30°C for at least 30 minutes without any voltages applied to the tube. The minimum resistance between any two electrodes as measured with a 200-volt Megger-type ohmmeter having an internal impedance of 1.0 meghm, will be 1.0 meghm.
a Because the cathode is subjected to back bombardment and the frequency is increased with resultant increase in temperature, the heater voltage should, for optimum life, be reduced to a value such that at the heater voltage obtained at minimum supply voltage conditions (all other voltages constant) the tube performance just starts to show some degradation; e.g., at 470Mc, heater volts = 12.5 (Approx.).

b Measured with special shield adapter.

c The maximum rating for a signal having a minimum peak-to-average power ratio less than 2, such as is obtained in "Single-Tone" operation, is 300 ma. During short-periods of circuit adjustment under "Single-Tone" conditions, the average plate current may be as high as 450 ma.

d Obtained preferably from a separate, well regulated source.

e This value represents the approximate grid-No.1 current obtained due to initial electron velocities and contact-potential effects when grid No.1 is driven to zero volts at maximum signal.

f Driver power output represents circuit losses and is the actual power measured at input to grid-No.1 circuit. The actual power required depends on the operating frequency and the circuit used. The tube driving power is approximately zero watts.

g With maximum signal output used as a reference, and without the use of feedback to enhance linearity.

h This value of useful power is measured at load of output circuit.

i The tube should see an effective plate supply impedance which limits the peak current through the tube under surge conditions to 15 amperes.

j Driver power output includes circuit losses and is the actual power measured at the input to the grid circuit. It will vary depending upon the frequency of operation and the circuit used.

k Measured in a typical coaxial-cavity circuit.

DEFINITIONS

CSE - Continuous Commercial Service

Rating System - The maximum ratings in the tabulated data are established in accordance with the following definition of the Absolute-Maximum Rating System for rating electron devices:

Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.

The device manufacturer chooses these values to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environment variations, and the effects of changes in operating conditions due to variations in device characteristics.

The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply-voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in device characteristics.

Two-Tone Modulation - Two-Tone Modulation operation refers to that class of amplifier service in which the input consists of two monofrequency RF signals having equal peak amplitude.

GENERAL CONSIDERATIONS

Temperature

The maximum terminal temperature of 250° C and the maximum radiotron core temperature of 250° C are tube ratings and are to be observed in the same manner as other ratings. The temperature may be measured with temperature-sensitive paint, such as Tempilag. The latter is made by the Tempil Corporation, 132 W. 22nd Street, New York 11, N.Y.

Mounting

The plate connection to the B121 may be made by a metal band or spring contacts to the larger fin of the radiator which is located at the base end.

If rigid connections are made to more than one plane (base, flange, and radiator), adjustment must be made in a plane normal to the major tube axis to compensate for variations in concentricity for the associated parts of the tube. See Dimensional Outline.

Fig.1 - Structural Arrangement of Type 8121.

ELECTRICAL CONSIDERATIONS

Grid No.1

Grid No.1 of the B121 in uhf service is subjected to heating caused not only by the normal electron bombardment as indicated by the grid current, but also by radiation from the cathode and circulating r f currents. For these reasons, more than ordinary care must be taken during operation to prevent exceeding the grid-No.1 current rating and the maximum grid-No.1 terminal temperature rating.

Grid No.2

The grid No.2 current of the B121 may be negative under certain operating conditions. The voltage for grid No.2 should be obtained from a source of good regulation; if a separate source is used, a maximum impedance of 10000 ohms and a minimum divider current of 40 ma are required; if a voltage divider from the plate supply is used, a maximum impedance of 10000 ohms between the grid-No.2 and ground is required. The plate voltage should be applied before or simultaneously with grid-No.2 voltage; otherwise, with voltage on grid-No.2 only, its current may be large enough to cause excessive grid-No.2 dissipation.

- 3 -
The grid-No.2 current is a very sensitive indication of plate-circuit loading. When the 8121 is operated without load, the grid-No.2 current rises excessively, often to a value which damages the tube. Therefore, care should be taken when tuning the 8121 circuit under no-load or lightly loaded conditions to prevent exceeding the grid-No.2 input rating of the tube. In this connection, reduction of the grid-No.2 voltage will be helpful.

Plate

In tubes, such as the 8121, having very closely spaced electrodes, extremely high voltage gradients occur even with moderate tube operating voltages. Any tube flash-arching may be destructive. It is recommended that each tube see an effective plate supply impedance which limits the peak current through the tube under surge conditions to 15 amperes. Failure of the tubes due to internal flashing is more prevalent when the circuit is not tuned to optimum conditions. Even though laboratory tests indicate that no such protection is needed, poor circuit adjustment in the field may result in shortened tube life.

Driver

The driver power output shown in the typical operation for the 8121 in rf service is considerably more than is normally calculated for typical driving power input in order to permit considerable range of adjustment, and also to provide for losses in the grid-No.1 circuits and the coupling circuits. This consideration is particularly important at the higher frequencies where circuit losses, radiation losses, and transit-time losses increase, and the effects of cathode-lead inductive reactance becomes significant.
Cathode-Drive Circuits

In cathode-drive circuits, driver power output and the developed rf power output act in series to supply the load circuit. If the driving voltage and grid-No.1 current are increased, the output will always increase. Such is not the case in a grid-drive circuit where a saturation effect takes place, i.e., above a certain value of driving voltage and current, the output increases very slowly and may even decrease. It is important to recognize this difference and not try to saturate a cathode-drive stage because the maximum grid-No.2 input may easily be exceeded.

In tuning a cathode-drive rf amplifier, it must be remembered that variations in the load on the output stage will produce corresponding variations in the load on the driving stage.

This effect will be noticed by the simultaneous increase in plate currents of both the output and driving stages.

Class C RF Telegraphy Service

In class C rf telegraphy service, the 8121 may be supplied with bias by any convenient method except when the tube is used in the final amplifier or a preceding stage of a transmitter designed for break-in operation and oscillator keying. In this case, an amount of fixed bias must be used to limit the plate current and, therefore, the plate dissipation to a safe value.

Standby Operation

During standby periods in intermittent operation, the heater voltage may be maintained at normal operating value for most applications.
In those applications which require maximum reliability, it is recommended that the heater voltage be maintained at normal operating value when the period is less than 15 minutes; that it be reduced to 80 per cent of normal when the period is between 15 minutes and 2 hours; and that for longer periods, the heater voltage should be turned off.

Protective Devices

Protective devices should be used to protect not only the plate but also grid No.2 against overload. In order to prevent excessive plate-current flow and resultant overheating of the tube, the common ground lead of the plate circuit should be connected in series with the coil of an instantaneous overload relay. This relay should be adjusted to remove the dc plate and grid-No.2 voltage when the average value of plate current reaches a value slightly higher than normal plate current. A protective device in the grid-No.2 supply should remove the grid-No.2 voltage when the dc grid-No.2 current reaches a value slightly higher than normal.

Precautions

The rated plate and grid-No.2 voltages of this tube are extremely dangerous. Great care should be taken during the adjustment of circuits. The tube and its associated apparatus, especially all parts which may be at high potential above ground, should be housed in a protective enclosure. The protective housing should be designed with interlocks so that personnel can not possibly come in contact with any high-potential point in the electrical system. The interlock devices should function to break the primary circuit of the high-voltage supplies when any gate or door on the protective housing is opened.
and should prevent the closing of the primary circuit until the door is again locked.

COOLING CONSIDERATIONS

System

Forced-air cooling of the 8121 is required as indicated in Fig. 8. A suitable air filter is required in the air supply. Care should be given to cleaning or replacing the filter at intervals in order that accumulated dirt will not obstruct the required flow of air through the radiator.

Precautions

The cooling system should be properly installed to insure safe operation of the tube under all conditions and for this reason should be electrically interconnected with the heater and plate power supplies. This arrangement is necessary to make sure that the tube is supplied with air simultaneously with electrode voltages. Air-flow interlocks which open the power transformer primaries are desirable for protecting the tube when the air flow is insufficient or ceases.

Fig. 8 - Typical Cooling Requirements for Type 8121.

Information furnished by RCA is believed to be accurate and reliable. However, no responsibility is assumed by RCA for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of RCA.
NOTE 1: KEEP ALL STIPLED REGIONS CLEAR. DO NOT ALLOW CONTACTS OR CIRCUIT COMPONENTS TO PROTRUDE INTO THESE ANNUAL VOLUMES.

NOTE 2: THE DIAMETERS OF THE RADIATOR, GRID-NO.2 TERMINAL CONTACT SURFACE, AND PIN CIRCLE TO BE CONCENTRIC WITHIN THE FOLLOWING VALUES OF MAXIMUM FULL INDICATOR READING:
- Radiator to Grid-No.2 Terminal Contact Surface 0.030" max.
- Radiator to Pin Circle .. 0.040" max.
- Grid-No.2 Terminal Contact Surface to Pin Circle 0.030" max.

NOTE 3: THE FULL INDICATOR READING IS THE MAXIMUM DEVIATION IN RADIAL POSITION OF A SURFACE WHEN THE TUBE IS COMPLETELY ROTATED ABOUT THE CENTER OF THE REFERENCE SURFACE. IT IS A MEASURE OF THE TOTAL EFFECT OF RUN-OUT AND ELLIPTICITY.

TAH DIMENSION AROUND THE PERIPHERY OF ANY INDIVIDUAL PIN MAY VARY WITHIN THE LIMITS SHOWN.

GAUGE DRAWING
JEDEC No. GE11-1

SECTION AA'

- 8 -