The 12E6K6 is a miniature pentode intended for use as a radio-frequency or intermediate-frequency amplifier in automobile radio receivers. The tube is specially designed to operate with its plate and screen voltages supplied directly from a 12-volt storage battery.

GENERAL

Cathode—Coated Unipotential

Heater Voltage, AC or DC 12.6* Volts

Heater Current 0.19 Amperes

Direct Interelectrode Capacitances†

- Grid-Number 1 to Plate, maximum 0.032 µf
- Input .. 10 µf
- Output ... 5.5 µf

MECHANICAL

- Mounting Position—Any
- Envelope—T-5½, Glass
- Base—E7-1, Miniature Button 7-Pin

MAXIMUM RATINGS

DESIGN-MAXIMUM VALUES

- Plate Voltage .. 16 Volts
- Screen Voltage 16 Volts
- Positive DC Grid-Number 1 Voltage 0 Volts

Heater-Cathode Voltage

- Heater Positive with Respect to Cathode 16 Volts
- Heater Negative with Respect to Cathode 16 Volts
- Grid-Number 1 Circuit Resistance 10 Megohms

Design-Maximum ratings are limiting values of operating and environmental conditions applicable to a bogey tube of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, taking responsibility for the effects of changes in operating conditions due to variations in tube characteristics.

The equipment manufacturer should design so that initially and throughout life no design-maximum value for the intended service is exceeded with a bogey tube under the worst probable operating conditions with respect to supply-voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, and environmental conditions.

The tubes and arrangements disclosed herein may be covered by patents of General Electric Company or others. Neither the disclosure of any information herein nor the sale of tubes by General Electric Company conveys any license under patent claims covering combinations of tubes with other devices or elements. In the absence of an express written agreement to the contrary, General Electric Company assumes no liability for patent infringement arising out of any use of the tubes with other devices or elements by any purchaser of tubes or others.
CHARACTERISTICS AND TYPICAL OPERATION

AVERAGE CHARACTERISTICS

Plate Voltage
Suppressor Voltage
Screen Voltage
Grid-Number 1 Voltage
Grid-Number 1 Resistor
Plate Resistance, approximate
Transconductance
Plate Current
Screen Current
Grid-Number 1 Voltage, approximate

1_b = 10 Microamperes

12.6 Volts
0 Volts
12.6 Volts
† Volts
2.2 Megohms
40000 Ohms
4200 Micromhos
4.4 Milliamperes
2.0 Milliamperes

When used in automobile service from a 12-volt source, under no circumstances should the heater voltage be less than 10.0 volts or more than 15.9 volts. These extreme variations in heater voltage may be tolerated for short periods; however, operation at or near these absolute limits in heater voltage necessarily involves sacrifice in performance at low heater voltage and in life expectancy at high heater voltage. Equipment reliability can be significantly increased with improved supply-voltage regulation.

† Without external shield.
‡ Average contact potential developed across 2.2-megohm grid resistor.

AVERAGE PLATE CHARACTERISTICS

E_f = RATED VALUE
E_c3 = 0 Volts
E_c2 = 12.6 Volts
AVERAGE TRANSFER CHARACTERISTICS

$E_f = \text{RATED VALUE}$

$E_b = 12.6 \text{ VOLTS}$

$E_{c3} = 0 \text{ VOLTS}$

$E_{c2} = 12.6 \text{ VOLTS}$

PLATE RESISTANCE (R_p) \text{ IN OHMS}

PLATE (I_p) OR SCREEN (I_{c2}) CURRENT \text{ IN MILLIAMPERES}

GRID-NUMBER 1 VOLTAGE \text{ IN VOLTS}

TRANSCONDANCE (G_m) \text{ IN MICROHMS}