COMPACTRON TWIN PENTODE

FOR COLOR DEMODULATOR APPLICATIONS

- COLOR TV TYPE
- DUAL-CONTROL
- LOW LEVEL COLOR DEMODULATORS

The 6B11 is a compactron containing twin, dual-control, sharp-cutoff pentodes designed for use as color demodulators in color television receivers. Grids 1 and 3 may be used as independent control electrodes.

GENERAL

ELECTRICAL

- Cathode - Coated Unipotential

Heater Characteristics and Ratings

- Heater Voltage, AC or DC*: 6.3 ± 0.6 Volts
- Heater Current+: 0.9 Amperes

Direct Interelectrode Capacitances, Each Section

- Grid-Number 1 to Plate: (g1 to p), 0.10 pf
- Grid-Number 3 to Plate: (g3 to p), 3.2 pf
- Input: g1 to (h + k + g2 + g3 + i.s.), 7.5 pf
- Grid-Number 3 to All: (h + k + g1 + g2 + p + i.s.), 7.5 pf
- Grid-Number 1 to Grid-Number 3: (g1 to g3), 0.10 pf

MECHANICAL

- Operating Position - Any
- Envelope - T-9, Glass
- Base - E12-70, Button 12-Pin
- Outline Drawing - EIA 9-59

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Diameter</td>
<td>1.188 inches</td>
</tr>
<tr>
<td>Minimum Diameter</td>
<td>1.062 inches</td>
</tr>
<tr>
<td>Maximum Over-all Length</td>
<td>2.625 inches</td>
</tr>
<tr>
<td>Maximum Seated Height</td>
<td>2.250 inches</td>
</tr>
<tr>
<td>Minimum Seated Height</td>
<td>2.000 inches</td>
</tr>
</tbody>
</table>

MAXIMUM RATINGS

Design-Maximum ratings are limiting values of operating and environmental conditions applicable to a bogy electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making allowance for the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration.

The equipment manufacturer should design so that initially and throughout life no design-maximum value for the intended service is exceeded with a bogy tube under the worst probable operating conditions with respect to supply-voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of all other electron devices in the equipment.

PHYSICAL DIMENSIONS

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.188” Max.</td>
<td>2.250” Max.</td>
</tr>
<tr>
<td>1.062” Min.</td>
<td>2.000” Min.</td>
</tr>
</tbody>
</table>

TERMINAL CONNECTIONS

- Pin 1 - Heater
- Pin 2 - Grid Number 3 (Suppressor) (Section 2)
- Pin 3 - Plate (Section 2)
- Pin 4 - Grid Number 2 (Screen) (Section 2)
- Pin 5 - Cathode (Section 2)
- Pin 6 - Grid Number 1 (Section 2)
- Pin 7 - Grid Number 1 (Section 1)
- Pin 8 - Cathode (Section 1)
- Pin 9 - Grid Number 2 (Screen) (Section 1)
- Pin 10 - Plate (Section 1)
- Pin 11 - Grid Number 3 (Suppressor) (Section 1)
- Pin 12 - Heater and Internal Shield
MAXIMUM RATINGS (Cont'd)

DESIGN-MAXIMUM VALUES, EACH SECTION
Plate Voltage .. 300 Volts
Grid-Number 3 Voltage
 Positive Value (DC and Peak) 25 Volts
 Negative Value (DC and Peak) 100 Volts
Screen-Supply Voltage 300 Volts
Screen Voltage - See Screen Rating Chart
Positive DC Grid-Number 1 Voltage 0 Volts
Negative DC Grid-Number 1 Voltage 50 Volts
Plate Dissipation ... 1.7 Watts
Screen Dissipation ... 1.0 Watts
Heater-Cathode Voltage
 Heater Positive with Respect to Cathode
 DC Component ... 100 Volts
 Total DC and Peak 200 Volts
 Heater Negative with Respect to Cathode
 Total DC and Peak 200 Volts
Grid-Number 1 Circuit Resistance
 With Fixed Bias 0.22 Megohms
 With Cathode Bias 0.47 Megohms
 Grid-Number 3 Circuit Resistance 0.68 Megohms

CHARACTERISTICS AND TYPICAL OPERATION

AVERAGE CHARACTERISTICS, EACH SECTION
Plate Supply Voltage 150 Volts
Grid-Number 3 Supply Voltage 0 Volts
Screen Supply Voltage 100 Volts
Cathode-Bias Resistor 180 Ohms
Amplification Factor, Grid-Number 3 to Plate 70
Plate Resistance, approximate 0.2 Megohms
Transconductance, Grid-Number 1 to Plate 3700 Micromhos
Transconductance, Grid-Number 3 to Plate 400 Micromhos
Plate Current ... 3.6 Milliamperes
Screen Current ... 2.0 Milliamperes
Grid-Number 1 Voltage, approximate
 Ib = 75 Microamperes -3.0 Volts
Grid-Number 3 Voltage, approximate
 Ib = 85 Microamperes -5.5 Volts

NOTES
* The equipment designer should design the equipment so that heater voltage is centered at the specified bogey value, with heater supply variations restricted to maintain heater voltage within the specified tolerance.
† Heater current of a bogey tube at Ef = 6.3 volts.
§ Without external shield.

The tubes and arrangements disclosed herein may be covered by patents of General Electric Company or others. Neither the disclosure of any information herein nor the sale of tubes by General Electric Company conveys any license under patent claims covering combinations of tubes with other devices or elements. In the absence of an express written agreement to the contrary, General Electric Company assumes no liability for patent infringement arising out of any use of the tubes with other devices or elements by any purchaser of tubes or others.