TUNG-SOL

TRIODE

COATED UNIPOTENTIAL CATHODE

HEATER
12.6 VOLTS 150 MA.
AC OR DC
ANY MOUNTING POSITION

BOTTOM VIEW
INTERMEDIATE SHELL
6 PIN OCTAL BASE

GLASS BULB

THE 12J5GT IS A GENERAL PURPOSE MEDIUM-MU TRIODE. IT IS USEFUL FOR SERVICE AS AN OSCILLATOR OR AUDIO-FREQUENCY AMPLIFIER.

DIRECT INTERELECTRODE CAPACITANCES - APPROX.
WITH CLOSE FITTING SHIELD CONNECTED TO CATHODE

GRID TO PLATE: (G TO P) 3.8 μμf
INPUT: G TO (H+K) 4.2 μμf
OUTPUT: P TO (H+K) 5 μμf

RATINGS
INTERPRETED ACCORDING TO NWA STANDARD MB-210

HEATER VOLTAGE 12.6 VOLTS
MAXIMUM HEATER-CATHODE VOLTAGE 90 VOLTS
MAXIMUM PLATE VOLTAGE 300 VOLTS
MINIMUM NEGATIVE DC GRID VOLTAGE 0 VOLTS
MAXIMUM GRID CIRCUIT RESISTANCE 1.0 MEG.
MAXIMUM PLATE DISSIPATION 2.5 WATTS
MAXIMUM CATHODE CURRENT 20 MA.

TYPICAL OPERATING CONDITIONS AND CHARACTERISTICS

CLASS A1 AMPLIFIER

| HEATER VOLTAGE | 12.6 | 12.6 | VOLTS
| HEATER CURRENT | 150 | 150 | MA.
| PLATE VOLTAGE | 250 | 250 | VOLTS
| GRID VOLTAGE | 0 | -8 | VOLTS
| PLATE CURRENT | 9 | | MA.
| PLATE RESISTANCE| 700 | 700 | OHMS
| TRANSCONDUCTANCE| 2000 | 2000 | μMHS
| AMPLIFICATION FACTOR | 20 | 20 |

SIMILAR TYPE REFERENCE: Ratings and characteristics are identical to 12AU, except for heater ratings.
CONTINUED ON FOLLOWING PAGE

→ INDICATES A CHANGE OR ADDITION.

COPYRIGHT 1946 BY TUNG-SOL LAMP WORKS INC. ELECTRONIC TUBE DIVISION NEWARK, NEW JERSEY, U.S.A.
Resistance Coupled Amplifier

<table>
<thead>
<tr>
<th>R_1 MEG.</th>
<th>R_{g1} MEG.</th>
<th>R_b MEG.</th>
<th>$E_{bb} = 90$ VOLTS</th>
<th>$E_{bb} = 150$ VOLTS</th>
<th>$E_{bb} = 300$ VOLTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>A</td>
<td>0.10</td>
<td>3300</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>0.10</td>
<td>A</td>
<td>0.24</td>
<td>3600</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>0.24</td>
<td>A</td>
<td>0.24</td>
<td>7500</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>0.24</td>
<td>A</td>
<td>0.51</td>
<td>9100</td>
<td>14</td>
<td>19</td>
</tr>
<tr>
<td>0.51</td>
<td>A</td>
<td>0.51</td>
<td>13000</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>0.51</td>
<td>A</td>
<td>1.0</td>
<td>15000</td>
<td>14</td>
<td>19</td>
</tr>
<tr>
<td>0.24</td>
<td>10</td>
<td>0.24</td>
<td>---</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>0.24</td>
<td>10</td>
<td>0.51</td>
<td>---</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>0.51</td>
<td>10</td>
<td>0.51</td>
<td>---</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>0.51</td>
<td>10</td>
<td>1.0</td>
<td>---</td>
<td>17</td>
<td>18</td>
</tr>
</tbody>
</table>

Value of R_{g1} is not critical.

Gain measured at $E_o = 2.0$ volts RMS output.

E_o is RMS output for 5% total harmonic distortion.

![Circuit Diagram](image)

Input

Output

Note: Coupling capacitors C_g and C_k should be selected to give desired frequency response. R_b should be adequately bypassed by capacitor C_k.

Indicates a change or addition.

Plate 1949

Jan. 2, 1948

Copyright 1948 by Tung-Sol Lamp Works Inc. Electronic Tube Division Newark, New Jersey, U.S.A.
12J5GT

$E_f = 12.6 \text{ Volts}$

$E_b = 250 \text{ Volts}$

- σ_m
- r_P
- μ

Transconductance (σ_m) - Micromhos

Amplification Factor (μ)

Plate Resistance (r_P) - Kilohms