TUNG-SOL
PENTODE
MINIATURE TYPE

COATED UNIPOTENTIAL CATHODE
HEATER
6.3 VOLTS 0.3 AMP.
AC OR DC
ANY MOUNTING POSITION

THE 6B26 IS A HIGH TRANSCONDUCTANCE, SEMI-REMOTE CUT-OFF, PENIODE AMPLIFIER. IT IS DESIGNED FOR SERVICE AS AN AUTOMATIC GAIN CONTROLLED IF AMPLIFIER IN 300 MA. SERIES HEATER OPERATED TELEVISION RECEIVERS.

THERMAL CHARACTERISTICS OF THE HEATER ARE CONTROLLED SUCH THAT HEATER VOLTAGE SURGES DURING THE WARM-UP CYCLE ARE MINIMIZED PROVIDED IT IS USED WITH OTHER TYPES WHICH ARE SIMILARLY CONTROLLED. WITH THE EXCEPTION OF HEATER RATINGS, ITS CHARACTERISTICS ARE IDENTICAL TO THE 3B26.

DIRECT INTERELECTRODE CAPACITANCES ←

WITH SHIELD\(^a\) WITHOUT SHIELD
GRID TO PLATE: \(G_1 \) TO \(P \) (MAX.) 0.015 0.025 \(\mu \)\(\mu \)f
INPUT: \(G_1 \) TO \((H+K+G_2+G_3+IS) \) 7.0 7.0 \(\mu \)\(\mu \)f
OUTPUT: \(P \) TO \((H+K+G_2+G_3+IS) \) 3.0 2.0 \(\mu \)\(\mu \)f

\(^a\) EXTERNAL SHIELD #316 CONNECTED TO CATHODE AT SOCKET.

RATINGS\(^b\) INTERPRETED ACCORDING TO DESIGN CENTER VALUES

HEATER VOLTAGE 6.3±10% ← VOLTS
MAXIMUM HEATER CATHODE VOLTAGE:
HEATER NEGATIVE WITH RESPECT TO CATHODE 200 VOLTS
HEATER POSITIVE WITH RESPECT TO CATHODE 100 VOLTS
TOTAL DC AND PEAK 200 VOLTS
MAXIMUM PLATE VOLTAGE 330 ← VOLTS
MAXIMUM GRID #2 VOLTAGE SEE RATING CURVE
MAXIMUM PLATE DISSIPATION 2.3 ← WATTS
MAXIMUM GRID #2 DISSIPATION 0.55 ← WATT
MAXIMUM GRID #2 SUPPLY VOLTAGE 330 ← VOLTS
MAXIMUM POSITIVE DC GRID #1 VOLTAGE* 0 VOLTS

\(^b\) DESIGN MAXIMUM RATINGS ARE THE LIMITING VALUES EXPRESSED WITH RESPECT TO BOGIE TUBES AT WHICH SATISFACTORY TUBE LIFE CAN BE EXPECTED TO OCCUR IN THE TYPES OF SERVICE FOR WHICH THE TUBE IS RATED. THEREFORE, THE EQUIPMENT DESIGNER MUST ESTABLISH THE CIRCUIT DESIGN SO THAT INITIALLY AND THROUGHOUT EQUIPMENT LIFE NO DESIGN MAXIMUM VALUE IS EXCEEDED WITH A BOGIE TUBE UNDER THE WORST PROBABLE OPERATING CONDITIONS WITH RESPECT TO SUPPLY-VOLTAGE VARIATION, EQUIPMENT COMPONENT VARIATION, EQUIPMENT CONTROL ADJUSTMENT, LOAD VARIATION, AND ENVIRONMENTAL CONDITIONS.

CONTINUES ON FOLLOWING PAGE

\(^*\) INDICATES A CHANGE.
\(^\dagger\) INDICATES AN ADDITION.
PENTODE
MINIATURE TYPE
COATED UNIPOTENTIAL CATHODE
HEATER
6.3 VOLTS 0.3 AMP.
AC OR DC
ANY MOUNTING POSITION

THE 6B26 IS A HIGH TRANSCONDUCTANCE, SEMI-REMOTE CUT-OFF, PENUMBRE AMPLIFIER. IT IS DESIGNED FOR SERVICE AS AN AUTOMATIC GAIN CONTROLLED IF AMPLIFIER IN 300 MA. SERIES HEATER OPERATED TELEVISION RECEIVERS.

THERMAL CHARACTERISTICS OF THE HEATER ARE CONTROLLED SUCH THAT HEATER VOLTAGE SURGES DURING THE WARM-UP CYCLE ARE MINIMIZED PROVIDED IT IS USED WITH OTHER TYPES WHICH ARE SIMILARLY CONTROLLED. WITH THE EXCEPTION OF HEATER RATINGS, ITS CHARACTERISTICS ARE IDENTICAL TO THE 3B26.

DIRECT INTERELECTRODE CAPACITANCES ←

<table>
<thead>
<tr>
<th>WITH SHIELD</th>
<th>WITHOUT SHIELD</th>
</tr>
</thead>
<tbody>
<tr>
<td>G2 TO P (MAX.)</td>
<td>0.15</td>
</tr>
<tr>
<td>INPUT: G2 TO (H+K+G2+G3+IS)</td>
<td>7.0</td>
</tr>
<tr>
<td>OUTPUT: P TO (H+K+G2+G3+IS)</td>
<td>3.0</td>
</tr>
</tbody>
</table>

A EXTERNAL SHIELD #316 CONNECTED TO CATHODE AT SOCKET.

RATINGS
INTERPRETED ACCORDING TO DESIGN CENTER VALUES

<table>
<thead>
<tr>
<th>HEATER VOLTAGE</th>
<th>6.3±10% ← VOLTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAXIMUM HEATER CATHODE VOLTAGE:</td>
<td></td>
</tr>
<tr>
<td>HEATER NEGATIVE WITH RESPECT TO CATHODE</td>
<td>200 VOLTS</td>
</tr>
<tr>
<td>TOTAL DC AND PEAK</td>
<td>100 VOLTS</td>
</tr>
<tr>
<td>HEATER POSITIVE WITH RESPECT TO CATHODE</td>
<td>200 VOLTS</td>
</tr>
<tr>
<td>DC</td>
<td></td>
</tr>
<tr>
<td>MAXIMUM PLATE VOLTAGE</td>
<td>350 ← VOLTS</td>
</tr>
<tr>
<td>MAXIMUM GRID #2 VOLTAGE</td>
<td>SEE RATING CURVE</td>
</tr>
<tr>
<td>MAXIMUM PLATE DISSIPATION</td>
<td>2.3 ← WATTS</td>
</tr>
<tr>
<td>MAXIMUM GRID #2 DISSIPATION</td>
<td>0.55 ← WATT</td>
</tr>
<tr>
<td>MAXIMUM GRID #2 SUPPLY VOLTAGE</td>
<td>350 ← VOLTS</td>
</tr>
<tr>
<td>MAXIMUM POSITIVE DC GRID #1 VOLTAGE*</td>
<td>0 VOLTS</td>
</tr>
</tbody>
</table>

B DESIGN MAXIMUM RATINGS ARE THE LIMITING VALUES EXPRESSED WITH RESPECT TO ROGUE TUBES AT WHICH SATISFACTORY TUBE LIFE CAN BE EXPECTED TO OCCUR IN THE TYPES OF SERVICE FOR WHICH THE TUBE IS RATED. THEREFORE, THE EQUIPMENT DESIGNER MUST ESTABLISH THE CIRCUIT DESIGN SO THAT INITIALLY AND THOUGHOUT LIFE NO DESIGN MAXIMUM VALUE IS EXCEEDED WITH A ROGUE TUBE UNDER THE MOST PROBABLE OPERATING CONDITIONS WITH RESPECT TO SUPPLY-VOLTAGE VARIATION, EQUIPMENT COMPONENT VARIATION, EQUIPMENT CONTROL ADJUSTMENT, LOAD VARIATION, AND ENVIRONMENTAL CONDITIONS.

CONTINUED ON FOLLOWING PAGE

* INDICATES A CHANGE.
** INDICATES AN ADDITION.
Grid #2 Voltage Expressed as Percent of Maximum Grid #2 Supply Voltage Rating

\[\text{GRID #2 INPUT EXPRESSED AS PERCENT OF MAXIMUM GRID #2 INPUT RATING} \]

Plate Milliamperes

\[\text{PLATE MILLIAMPERES} \]

Plate Volts

\[\text{PLATE VOLTS} \]

6BZ6

\[E_f = 6.3 \text{ Volts} \]

\[E_{C_2} = 150 \text{ Volts} \]

6BZ6

Grid #2 Rating Curve
6BZ6

$E_t = 6.3$ Volts
$E_b = 200$ Volts
$E_{c2} = 150$ Volts
6BZ6

$E_f = 6.3 \text{ Volts}$

$E_b = 200 \text{ Volts}$

$E_{c2} = 150 \text{ Volts}$