TRIPLE TRIODE

COATED UNIPOTENTIAL CATHODE

HEATER NOMINAL

6.3 Volts 0.6±0.04 Amp.
AC OR DC
ANY MOUNTING POSITION

GLASS BULB

BOTTOM VIEW

BASING DIAGRAM
JEDEC 1280

THE 6C10 CONTAINS THREE HIGH-MU TRIODES WITH SEPARATE PIN CONNECTIONS FOR ALL THREE CATHODES, GRIDS AND PLATES IN A COMPACT T-9 GLASS ENVELOPE WITH THE NOVEL 12 PIN BASE.

DIRECT INTERELECTRODE CAPACITANCES
WITHOUT EXTERNAL SHIELD

GRID TO PLATE (EACH SECTION) 1.7 pf
INPUT (EACH SECTION) 1.6 pf
OUTPUT (SECTION 1) 0.30 pf
OUTPUT (SECTION 2) 0.24 pf
OUTPUT (SECTION 3) 0.34 pf

RATINGS
INTERPRETED ACCORDING TO DESIGN MAXIMUM SYSTEM
EACH SECTION

HEATER VOLTAGE 6.3±0.6 VOLTS
HEATER CURRENT 0.6±0.04 AMP.
MAXIMUM PLATE VOLTAGE 330 VOLTS
MAXIMUM POSITIVE DC GRID VOLTAGE 0 VOLTS
MAXIMUM NEGATIVE DC GRID VOLTAGE 50 VOLTS
MAXIMUM PLATE DISSIPATION, EACH PLATE 1.0 WATTS
MAXIMUM TOTAL PLATE DISSIPATION, ALL PLATES 3.0 WATTS
MAXIMUM HEATER–CATHODE VOLTAGE:
HEATER POSITIVE WITH RESPECT TO CATHODE 100 VOLTS
DC COMPONENT
TOTAL DC AND PEAK 200 VOLTS
HEATER NEGATIVE WITH RESPECT TO CATHODE
TOTAL DC AND PEAK 200 VOLTS
HEATER WARM-UP TIME* 11* SECONDS

CONTINUED ON FOLLOWING PAGE
TYPICAL OPERATING CONDITIONS AND CHARACTERISTICS

CLASS A\textsubscript{1} AMPLIFIER

EACH SECTION

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value 1</th>
<th>Value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate Voltage</td>
<td>100</td>
<td>250</td>
</tr>
<tr>
<td>Grid Voltage</td>
<td>-1.0</td>
<td>-2.0</td>
</tr>
<tr>
<td>Amplification Factor</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Plate Resistance</td>
<td>80 000</td>
<td>62 500</td>
</tr>
<tr>
<td>Transconductance</td>
<td>1 250</td>
<td>1 600</td>
</tr>
<tr>
<td>Plate Current</td>
<td>0.5</td>
<td>1.2</td>
</tr>
</tbody>
</table>

DESIGN-MAXIMUM RATINGS

Design-maximum ratings are limiting values of operating and environmental conditions applicable to a device electron device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions. The device manufacturer chooses these values to provide acceptable serviceability of the device, taking responsibility for the effects of changes in operating conditions due to variations in device characteristics. The equipment manufacturer should design so that initially and throughout life no design-maximum value for the intended service is exceeded with a device under the worst probable operating conditions with respect to supply-voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, and environmental conditions.

*Heater voltage supply variations to maintain heater voltage or current within the specified ratings.

*The time required for the voltage across the heater to reach 80% of its rated value after applying 4 times rated heater voltage to a circuit consisting of the tube heater in series with a resistance equal to 3 times the rated heater voltage divided by the rated heater current.

*Indicates an addition.

→ Indicates a change.