DIODE

UNIPOTENTIAL CATHODE
HEATER
6.3 VOLTS 1.2 AMP.
AC OR DC
ANY MOUNTING POSITION

BOTTOM VIEW
INTERMEDIATE SHELL
OR SHORTEST INTERMEDIATE SHELL
8 PIN OCTAL
406

THE 6DA4 IS AN INDIRECTLY-HEATED HALF WAVE RECTIFIER DESIGNED FOR SERVICE AS A DAMPING DIODE IN HORIZONTAL DEFLECTION CIRCUITS OF 1200 MA. SERIES HEATER OPERATED TELEVISION RECEIVERS. THERMAL CHARACTERISTICS OF THE HEATER ARE CONTROLLED SUCH THAT HEATER VOLTAGE SURGES DURING THE WARM-UP CYCLE ARE MINIMIZED PROVIDED IT IS USED WITH OTHER TYPES WHICH ARE SIMILARLY CONTROLLED.

DIRECT INTERELECTRODE CAPACITANCES — APPROX.

HEATER TO CATHODE
PLATE TO CATHODE & HEATER
CATHODE TO PLATE & HEATER

3.0 µuf
6.0 µuf
8.0 µuf

RATINGS
INTERPRETED ACCORDING TO DESIGN MAXIMUM SYSTEM - UNLESS OTHERWISE INDICATED

HEATER VOLTAGE
HEATER CURRENT
MAXIMUM HEATER—CATHODE VOLTAGE:
HEATER NEGATIVE WITH RESPECT TO CATHODE DC
TOTAL DC AND PEAK
HEATER POSITIVE WITH RESPECT TO CATHODE DC
TOTAL DC AND PEAK
MAXIMUM PEAK INVERSE VOLTAGE
MAXIMUM DC PLATE CURRENT
MAXIMUM DC PLATE CURRENT (DESIGN CENTER SYSTEM)
MAXIMUM PEAK PLATE CURRENT
MAXIMUM PLATE DISSIPATION
TUBE VOLTAGE DROP WITH ID = 250 MA.
HEATER WARM-UP TIME [APPROX.]

6.3 VOLTS
1.2 AMP.
900 VOLTS
4000 VOLTS
100 VOLTS
300 VOLTS
4000 VOLTS
155 MA.
145 MA.
900 MA.
5.5 WATTS
22 VOLTS
11.0 SECONDS

PINS 1, 2, 4, & 6 MUST NOT BE USED AS TIE POINTS.

A TIE UNUSED PINS AND METAL PART TO HEATER.

B FOR OPERATION IN A 525-LINE, 30-FRAME SYSTEM AS DESCRIBED IN "STANDARDS OF GOOD ENGINEERING PRACTICE FOR TELEVISION BROADCAST STATIONS; FEDERAL COMMUNICATIONS COMMISSION." THE DUTY OF THE HORIZONTAL VOLTAGE PULSE NOT TO EXCEED 15% OF THE SCANNING CYCLE.

CONTINUED ON FOLLOWING PAGE
HEATER WARM-UP TIME IS DEFINED AS THE TIME REQUIRED FOR THE VOLTAGE ACROSS THE HEATER TO REACH 80% OF ITS RATED VOLTAGE AFTER APPLYING 4 TIMES RATED HEATER VOLTAGE TO A CIRCUIT CONSISTING OF THE TUBE HEATER IN SERIES WITH A RESISTANCE OF VALUE 3 TIMES THE NOMINAL HEATER OPERATING RESISTANCE.

DESIGN-MAXIMUM RATINGS ARE THE LIMITING VALUES EXPRESSED WITH RESPECT TO BOGIE TUBES AT WHICH SATISFACTORY TUBE LIFE CAN BE EXPECTED TO OCCUR. TO OBTAIN SATISFACTORY CIRCUIT PERFORMANCE, THEREFORE, THE EQUIPMENT DESIGNER MUST ESTABLISH THE CIRCUIT DESIGN SO THAT NO DESIGN-MAXIMUM VALUE IS EXCEEDED WITH A BOGIE TUBE UNDER THE WORST PROBABLE OPERATING CONDITIONS WITH RESPECT TO SUPPLY-VOLTAGE VARIATION, EQUIPMENT COMPONENT VARIATION, EQUIPMENT CONTROL ADJUSTMENT, LOAD VARIATION, AND ENVIRONMENTAL CONDITIONS.