TENTATIVE DATA FOR EIMAC EM-779 TRAVELING WAVE TUBE

The Eimac EM-779 is a ruggedized, ceramic and metal, periodic permanent magnet focused, power-amplifier traveling wave tube. It is capable of delivering a minimum CW output power of one watt throughout the frequency range of 5.0 to 11.0 Gigacycles with a nominal small signal gain of 30 decibels. The EM-779 is designed to operate under severe environmental extremes of shock, vibration, temperature and altitude such as encountered in airborne applications.

The use of temperature compensated permanent magnets allows the EM-779 to be operated over a wide temperature range without degradation of performance. Flexible leads provide electrical connections to the tube.

GENERAL CHARACTERISTICS

ELECTRICAL

Cathode: Unipotential, oxide coated
Minimum Heating Time 60 seconds
Heater: Voltage 6.3 volts
 Current 0.6 amperes
Noise Figure 25 to 34 decibels
Minimum Saturated Output Power 1 watt
Frequency Range 5.0 to 11.0 gigacycles
Input and Output Impedance 50 ohms nominal

MECHANICAL

Operating Position Any
RF Input Coupling Type N Female Coaxial Fitting
RF Output Coupling Type N Female Coaxial Fitting
Focusing Periodic Permanent Magnet
Cooling Passive Heat Sink
Maximum Overall Dimensions See Outline Drawing
Net Weight (Including Magnets) 2.5 Pounds

MAXIMUM RATINGS

D-C BEAM VOLTAGE* 3000 VOLTS
D-C FOCUS ELECTRODE VOLTAGE*: NEGATIVE WITH RESPECT TO CATHODE 40 VOLTS
D-C CATHODE CURRENT 25 MILLIAMPERES

(Effective 4-1-62) Copyright 1962 by Eitel-McCullough, Inc. Printed in U.S.A.
TYPICAL OPERATING CHARACTERISTICS

Frequency ... 5.0 to 11.0 gigacycles
Minimum Output Power 1.0 watts
Small Signal Gain 30 decibels
D-C Beam Voltage* 2950 volts
D-C Cathode Current 23 milliamperes
D-C Focus Electrode Voltage* −30 volts
D-C Focus Electrode Current 0 milliamperes

*All voltages referred to cathode.

APPLICATION

Cooling: The EM-779 is designed to be heat sink cooled by means of the mounting available and integral with the tube and PPM structure. Under environmental conditions normally encountered in military equipments, additional cooling will not be required.

Cathode: The heater voltage should be maintained within ± 5 per cent of the rated value of 6.3 volts if variations in performance are to be minimized and best tube life obtained.

Helix: The helix, collector and anode are internally connected to the tube body and are operated at the same potential. Therefore, it is often convenient to operate these elements at chassis potential, with the cathode and focus electrode at appropriate negative potentials. The cathode potential should be maintained within ± 1% to insure proper operation.

Focus Electrode: The focus electrode power supply must be regulated within ± 2 per cent to minimize variations in performance.

Special Applications: For any additional information concerning this tube or its application, write to Microwave Product Manager, Eitel-McCullough, Inc., San Carlos, California.

ENVIRONMENTAL

Vibration: 10 g to 2000 cps (Curve A of Proc. XII, MIL-E-5272C)

Shock: 25 g, 11 ± 1 ms

Acceleration: Sustained, 25 g’s

Temperature: −54°C to + 85°C

Altitude: 70,000 ft.

NOTE: This data should not be used for final equipment design.
EM-779 TYPICAL OPERATING CHARACTERISTICS

ANODE VOLTAGE 2950 Vdc
CATHODE CURRENT 23 mA dc
FOCUS VOLTAGE -30 Vdc
FILAMENT VOLTAGE 6.3 Vac

SMALL SIGNAL GAIN

FREQUENCY Gc

GAIN db

SATURATED OUTPUT POWER

FREQUENCY Gc

OUTPUT watts

INPUT TO SATURATE

FREQUENCY Gc

INPUT dbm

BROADBAND TANGENTIAL SENSITIVITY

FREQUENCY Gc

INPUT dbm

OVERDRIVE

FREQUENCY Gc

OUTPUT dbm

INPUT dbm

OVERDRIVE

FREQUENCY Gc

OUTPUT dbm

INPUT dbm
CONNECTIONS

1. HEATER — BROWN
2. CATHODE HEATER — YELLOW
3. FOCUS ELECTRODE — GREEN
4. BODY GROUND — BLACK