COMPENSATED IONIZATION CHAMBER TYPE 8074

The 8074 compensated ionization chamber is designed to detect thermal neutrons in the presence of high gamma radiation fields. Provision for electrical adjustment of compensation after installation makes it particularly useful for Intermediate and Power range operation in reactor facilities where high gamma gradients are encountered. The use of stabilized polystyrene and the rugged, guard-ring design assures noise-free operation and minimizes spurious signal currents due to electrical leakage.

The use of materials of low-activation cross section minimizes handling problems and shift of characteristics during exposure. Careful design of the sensitive volumes minimizes shift in compensation characteristics over a wide range of gamma dose rates (See Figure 3).

The thermal neutron sensitivity of the 8074 is approximately 4×10^{-14} amperes/neutron/cm2/second. The gamma sensitivity, when operated uncompensated, is approximately 3×10^{-11} amperes/R/hour. The combination of these parameters permits highly reliable operation from 2.5×10^2 to 2.5×10^{10} neutrons/cm2/second.

MECHANICAL:
- Maximum Diameter: 3-3/16 Inches
- Maximum Overall Length: 23-13/16 Inches
- Approximate Sensitive Length: 14 Inches
- Net Weight: 5-3/8 Pounds
- Shipping Weight: 19 Pounds

MATERIALS:
- Outer Case: 3% Al, 97% Mg Alloy
- Electrodes: 3% Al, 97% Mg Alloy
- Insulation: Stabilized Polystyrene
- Neutron Sensitive Material:
 - Content: Boron enriched in B-10
 - Thickness: 1 mg/cm2
 - Gas Filling: Nitrogen

IMPEDANCE:
- Resistance: (Note 2)
 - Signal Electrode to Case (Minimum): 10^{13} Ohms
 - H.V. Electrode to Case (Minimum): 10^{12} Ohms
 - Compensating Electrode to Case (Minimum): 10^{12} Ohms
- Capacitance: (Note 1)
 - Signal Electrode to Case (Approx.): 275 µF
 - H.V. Electrode to Case (Approx.): 315 µF
 - Compensating Electrode to Case (Approx.): 125 µF

MAXIMUM RATINGS:
- Temperature: 175 max. Degrees F
- External Pressure (Note 3): 180 max. Pounds/Inch2
- Thermal Neutron Flux: 5×10^{11} max. nV

Neutron & Radiation Detector Section
WESTINGHOUSE ELECTRIC CORPORATION, ELECTRONIC TUBE DIVISION, ELMIRA, NEW YORK

from JEDEC release #3310, June 19, 1961
TYPICAL OPERATION:

Typical Connection See Figure 1
Operating Voltage 300 to 800 Volts
Compensating Voltage
(See Figure 3) -10 to -80 Volts
Saturation Characteristics See Figure 2
Thermal Neutron Flux
Range 2.5×10^2 to 2.5×10^{10} nev
Thermal Neutron Sensitivity 4×10^{-14} Amperes/nev
Gamma Sensitivity:
Total Compensation zero
Uncompensated 3×10^{-11} Amperes/R/hour

1. Capacitance is measured between an electrode and case, with all other electrodes grounded.
2. The detector may not be immersed directly in water, and high humidity environments should be avoided as they will impair performance.
3. The pressurizing atmosphere must be dry and non-corrosive.

TYPICAL CONNECTION DIAGRAM

Note: Permissible power supply regulation and ripple will depend upon the particular application. See Section entitled "Ionization Chamber Operation."

FIGURE 1

WESTINGHOUSE ELECTRIC CORPORATION, ELECTRONIC TUBE DIVISION, ELMIRA, NEW YORK
TYPICAL SATURATION CHARACTERISTICS

Signal Output in Milliamperes

Applied Positive Volts

2.4 x 10^10 nV
1.9 x 10^10 nV
1.2 x 10^10 nV
6 x 10^9 nV
3 x 10^9 nV

FIGURE 2
TYPICAL COMPENSATION CHARACTERISTICS

Positive Voltage
200 Volts

- - - - 50000 R/HR, Co-60
- - - - 2500 R/HR, Co-60
- - - - 50 R/HR, Co-60
- - - - 50 R/HR, Sb-124

Percentage of Compensation

Compensating Volts

FIGURE 3