CERAMIC VELOCITRON* TUBES

8336/ZV 1010X 950 to 2,800 mc
8337/ZV 1021X 1,000 to 4,000 mc
8335/ZV 1009X 1,700 to 5,000 mc

200 mw minimum output. Master Oscillator & Driver Tube.

Extremely rugged. Maximum heat, shock and vibration resistance.

APPLICATIONS

An integrated family of rugged higher power Velocitron* reflex klystrons for cw, FM or pulse operation in an external cavity.

- In microwave signal generators: Output power is adequate for generators providing more than 20 dbm output. Velocitrons permit FM, pulse and cw signal generation.

- In microwave signal sources: Suitable for use as a low power transmitter in antenna radiation patterns, standing wave and impedance measurements.

- In microwave transmitters: Provides low incidental FM in panoramic displays due to their low microphonics and high frequency stability. Provides sufficient master oscillator power for 100 w to 10 kw output systems.

- In microwave receivers: Ideal for local oscillator operation in receivers with AFC because of their frequency control characteristics.

- Reduces 3 stage system to 2 stages.

FEATURES

- Maximum shock and vibration resistance achieved by all-ceramic construction.

- Maximum heat resistance. Guaranteed for operation up to 250°C seal temperature. No cooling necessary.

- Interchangeable. All three klystrons use same power supplies and mechanical fittings.

- Virtually non-microphonic characteristics provided by rugged internal construction.

- Can be operated cw, pulsed and FM.

- Low distortion FM.

- Breakage in handling minimized.

VELOCITRON*† Type ZV1009X

*Trade Mark Registered
†Manufactured under Western Electric Patents

POLARAD ELECTRONICS CORPORATION 43-20 34th St., Long Island City 1, N.Y.
Tel. Exeter 2-4500

from JEDEC release #3848, Aug. 20, 1962
SPECIFICATIONS

MECHANICAL DATA

Base .. A4-76, Peewee 4 Pin.
Cap .. C1-3, skirted miniature.
Cooling Convection and conduction.
Contact rings make direct peripheral contact with metallic parts of the external cavity.
Mounting Position Any.

CONNECTIONS:

Pin 1 Control Electrode
Pin 2 Heater
Pin 3 Cathode
Pin 4 Heater
Lower Contact Ring 1st Resonator Grid
Upper Contact Ring 2nd Resonator Grid
Cap .. Reflector

ELECTRICAL DATA

HEATER CHARACTERISTICS:

Heater Voltage, AC or DC 6.3 ± 0.5 volts.
Heater Current 1.1 amp

RATINGS (Absolute Values):

Resonator Voltage 500 volts dc max.
Resonator Current 60 ma dc max.

Reflector Voltage -700 volts dc max. to 0 volts dc min.
Control Electrode Voltage +20 to -150 volts dc max.
Control Electrode Current 12 ma dc max.
Heater-Cathode Voltage ±45 volts dc max.
Power Input 30 watts max.
Seal Temperature 250 degrees C max.

Figure 1. CW, FM or Pulse-Modulated Oscillator Circuit, Using a Velocitron Ceramic Reflex Klystron

TYPICAL OPERATION AS A CW OSCILLATOR

<table>
<thead>
<tr>
<th></th>
<th>ZV 1021X</th>
<th>ZV 1010X</th>
<th>ZV 1008X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reflector Mode</td>
<td>1½</td>
<td>1½</td>
<td>2½</td>
</tr>
<tr>
<td>Cavity Mode</td>
<td>¼</td>
<td>¼</td>
<td>¾</td>
</tr>
<tr>
<td>Frequency</td>
<td>2900 mc</td>
<td>1500 mc</td>
<td>3200 mc</td>
</tr>
<tr>
<td>Resonator Voltage</td>
<td>420 volts</td>
<td>420 volts</td>
<td>420 volts</td>
</tr>
<tr>
<td>Cathode Current</td>
<td>45 ma</td>
<td>45 ma</td>
<td>45 ma</td>
</tr>
<tr>
<td>Reflector Voltage (Approx)</td>
<td>-400 volts</td>
<td>-200 volts</td>
<td>-120 volts</td>
</tr>
<tr>
<td>Control Electrode Voltage (Full Power Output)</td>
<td>+10 volts</td>
<td>+10 volts</td>
<td>+10 volts</td>
</tr>
<tr>
<td>Power Output Cutoff Voltage</td>
<td>+3 volts</td>
<td>+3 volts</td>
<td>+3 volts</td>
</tr>
<tr>
<td>Electronic Tuning Range (Between Half Power Points)</td>
<td>6 mc</td>
<td>6 mc</td>
<td>6 mc</td>
</tr>
</tbody>
</table>

TYPICAL OPERATION AS A PULSE-MODULATED OSCILLATOR:

The tubes can be pulse modulated over most of the cw frequency range. The general conditions are the same as for cw operation except as shown below.

Control Electrode Voltage -10 volts
Pulse Modulation Voltage +20 volts
Pulse Repetition Rate limited only by capabilities of external modulator.
Minimum Pulse Duration 0.5 microsecond
Rise Time 0.1 microsecond
Decay Time 0.1 microsecond
Figure 2. Typical Reflector Voltage vs. Frequency
Model ZV 1009X

Figure 3. Typical Curve of Power Characteristics
Model ZV 1009X

Figure 4. Outline Drawing

© Polarad Electronics Corporation, 1961
Figure 5. Typical Reflector Voltage vs. Frequency Model ZV 1010X

Figure 6. Typical Curve of Power Characteristics Model ZV 1010X

Figure 7. Typical Reflector Voltage vs. Frequency Model ZV 1021X

Figure 8. Typical Curve of Power Characteristics Model ZV 1021X