TENTATIVE DATA

TUNG-SOL

DIODE

COATED UNIPOTENTIAL CATHODE
HEATER
6.3±10% VOLTS 1.2 AMP.
AC OR DC
ANY MOUNTING POSITION

GLASS BULB

BOTTOM VIEW
INTERMEDIATE-SHELL
5 PIN OCTAL
400

THE 6AX4GTA IS A HEATER-CATHODE-TYPE SINGLE DIODE INTENDED FOR USE AS THE DAMPING DIODE IN THE HORIZONTAL-DEFLECTION CIRCUIT OF TELEVISION RECEIVERS. IT IS PARTICULARLY USEFUL IN AUTOTRANSFORMER DEFLECTION SYSTEMS IN WHICH HIGH PULSE VOLTAGES ARE APPLIED TO THE CATHODE OF THE DAMPER TUBE.

EXCEPT FOR HEATER RATINGS, THE 6AX4GTA IS IDENTICAL TO THE 12AX4GTB AND IS UNILATERALLY INTERCHANGEABLE WITH THE 6AX4GT.

DIRECT INTERELECTRODE CAPACITANCES - APPROX.
WITHOUT EXTERNAL SHIELD

<table>
<thead>
<tr>
<th>Capacitance</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CATHODE TO PLATE AND HEATER</td>
<td>8.5 μF</td>
</tr>
<tr>
<td>PLATE TO CATHODE AND HEATER</td>
<td>5.0 μF</td>
</tr>
<tr>
<td>HEATER TO CATHODE</td>
<td>4.0 μF</td>
</tr>
</tbody>
</table>

RATINGS

A INTERPRETED ACCORDING TO DESIGN MAXIMUM SYSTEM

TV DAMPER SERVICE

HEATER VOLTAGE 6.3±10% VOLTS
MAXIMUM PEAK INVERSE PLATE VOLTAGE 4400 VOLTS
MAXIMUM PLATE DISSIPATION 5.5 WATTS
MAXIMUM STEADY-STATE PEAK PLATE CURRENT 1000 MA.
MAXIMUM DC OUTPUT CURRENT 165 MA.
MAXIMUM HEATER-CATHODE VOLTAGE:
 HEATER POSITIVE WITH RESPECT TO CATHODE
 DC COMPONENT 100 VOLTS
 TOTAL DC AND PEAK 300 VOLTS
 HEATER NEGATIVE WITH RESPECT TO CATHODE
 DC COMPONENT 900 VOLTS
 TOTAL DC AND PEAK 4400 VOLTS

CONTINUED ON FOLLOWING PAGE.
TYPICAL OPERATING CONDITIONS AND CHARACTERISTICS

AVERAGE CHARACTERISTICS

HEATER VOLTAGE

6.5 ± 0.10 Volts

HEATER CURRENT

1.2 AMP.

TUBE VOLTAGE DROP I_b = 250 MA. DC

52 Volts

NOTE:

OPERATION OF THIS TUBE AS A POWER RECTIFIER IS NOT RECOMMENDED.

For operation in a 525-line, 30-frame system as described in "Standards of Good Engineering Practice for Television Broadcast Stations: Federal Communications Commission," the duty cycle of the voltage pulse must not exceed 2% of one scanning cycle.

DESIGN-MAXIMUM RATINGS are limiting values of operating and environmental conditions applicable to a bogey electron device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions. The device manufacturer chooses these values to provide acceptable serviceability of the device, taking responsibility for the effects of changes in operating conditions due to variations in device characteristics. The equipment manufacturer should design so that initially and throughout life no design-maximum value for the intended service is exceeded with a bogey device under the worst probable operating conditions with respect to supply-voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, and environmental conditions.

6AX4GTA

\[E_f = 6.3 \text{ Volts} \]