MECHANICAL DATA
Bulb .. T-3
Base Subminiature Button, Flexible Leads
Basing 8DK
Cathode Unipotential
Mounting Position Any

ELECTRICAL DATA
HEATER CHARACTERISTICS
Heater Voltage 6.3 Volts
Heater Current 150 Ma

DIRECT INTERELECTRODE CAPACITANCES

<table>
<thead>
<tr>
<th></th>
<th>Shielded</th>
<th>Unshielded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid to Plate</td>
<td>1.3</td>
<td>1.4 μF</td>
</tr>
<tr>
<td>Input</td>
<td>2.2</td>
<td>1.9 μF</td>
</tr>
<tr>
<td>Output</td>
<td>2.2</td>
<td>0.8 μF</td>
</tr>
</tbody>
</table>

RATINGS (Design Center Values)
Plate Voltage 250 Volts Max.
Plate Current 20 Ma Max.
Plate Dissipation 3 Watts Max.
Heater-Cathode Voltage 90 Volts Max.

CHARACTERISTICS AND TYPICAL OPERATION
Plate Voltage 200 Volts
Cathode Bias Resistor\(^2\) 680 Ohms
Plate Current 9.5 Ma
Transconductance 3800 μmhos
Amplification Factor 20
Plate Resistance 5300 Ohms
Grid Voltage for \(I_a = 10 \mu A\) -20 Volts

NOTES:
1. With 0.405" diameter shield connected to cathode.
2. Provides an operating bias of approximately 6.5 volts. Fixed bias operation is not recommended.
AVERAGE PLATE CHARACTERISTICS

The diagram shows a graph with two axes: one labeled 'PLATE VOLTS' ranging from 0 to 500, and the other labeled 'PLATE CURRENT (Ib) OR GRID (Ic) MILLIAMPERES' ranging from 0 to 35. The grid lines and curves indicate the relationship between plate voltage and plate current for a specific operating point, typically labeled with 'Ecf = 6.3 VOLS'.