from JEDEC release #3531,
Dec. 18, 1961

6BF8
SEXTUPLE DIODE

The 6BF8 is a miniature sextuple diode suitable for shunt-detector applications in which a number of input signals are encountered.

GENERAL

Electrical

Cathode - Coated Unipotential

Heater Characteristics and Ratings
Heater Voltage, AC or DC* 6.3±0.6 Volts
Heater Current+ 0.45 Amperes

Direct Interelectrode Capacitances:
Plate-Number 1 to Cathode and Heater 2.6 pf
Plate-Number 2 to Cathode and Heater 2.8 pf
Plate-Number 3 to Cathode and Heater 2.6 pf
Plate-Number 4 to Cathode and Heater 4.0 pf
Plate-Number 5 to Cathode and Heater 4.0 pf
Plate-Number 6 to Cathode and Heater 3.8 pf
Plate to All, Each Plate 4.4 pf

Mechanical

Mounting Position - Any
Envelope - T-6 1/2, Glass
Base - E9-1, Small Button 9-Pin
Outline Drawing - EIA 6-2
Maximum Diameter 7/8 Inches
Maximum Over-all Length 2 3/16 Inches
Maximum Seated Height 1 15/16 Inches

TERMINAL CONNECTIONS

Pin 1 - Plate Number 6
Pin 2 - Plate Number 5
Pin 3 - Plate Number 4
Pin 4 - Heater
Pin 5 - Heater
Pin 6 - Cathode
Pin 7 - Plate Number 3
Pin 8 - Plate Number 2
Pin 9 - Plate Number 1

ETR-2186
MAXIMUM RATINGs

Diode-Detector Service - Design-Maximum Values

Peak Inverse Plate Voltage 165 Volts
Peak Plate Current per Plate 11 Milliamperes
DC Output Current per Plate 2.2 Milliamperes
Heater-Cathode Voltage
 Heater Positive with Respect to Cathode 100 Volts
 Heater Negative with Respect to Cathode 100 Volts

Design-Maximum ratings are limiting values of operating and environmental
conditions applicable to a bogey electron tube of a specified type as defined
by its published data and should not be exceeded under the worst probable condi-
tions.

The tube manufacturer chooses these values to provide acceptable service-
ability of the tube, making allowance for the effects of changes in operating
conditions due to variations in the characteristics of the tube under considera-
tion.

The equipment manufacturer should design so that initially and throughout
life no design-maximum value for the intended service is exceeded with a bogey
tube under the worst probable operating conditions with respect to supply-
voltage variation, equipment component variation, equipment control adjustment,
load variation, signal variation, environmental conditions, and variations in
the characteristics of all other electron devices in the equipment.

AVERAGE CHARACTERISTICS

Tube Voltage Drop
 \[I_b = 5.0 \text{ Milliamperes DC per Plate} \]
 1.4 Volts

* The equipment designer should design the equipment so that the heater voltage
 is centered at the specified bogey value, with heater supply variations re-
 stricted to maintain heater voltage within the specified tolerance.

+ Heater current of a bogey tube at \(E_f = 6.3 \) volts.

* Without external shield.

-The tubes and arrangements disclosed herein may be covered by patents of General Electric Company or others.
Neither the disclosure of any information herein nor the sale of tubes by General Electric Company conveys any
license under patent claims covering combinations of tubes with other devices or elements. In the absence of an
express written agreement to the contrary, General Electric Company assumes no liability for patent infringement
arising out of any use of the tubes with other devices or elements by any purchaser of tubes or others.

11/13/61 (F)